ความขุ่นเป็นตัวแปรสำคัญในการวิเคราะห์คุณภาพน้ำที่ใช้วัดความขุ่นหรือความขุ่นของของเหลวที่เกิดจากอนุภาคแขวนลอย อนุภาคเหล่านี้อาจรวมถึงตะกอน สาหร่าย แบคทีเรีย และสิ่งปนเปื้อนอื่นๆ ที่อาจส่งผลต่อคุณภาพโดยรวมของน้ำ ความขุ่นวัดในหน่วยความขุ่นแบบเนฟีโลเมตริก (NTU) โดยค่าที่สูงกว่าบ่งชี้ถึงระดับอนุภาคแขวนลอยในน้ำที่สูงขึ้น

สาเหตุหลักประการหนึ่งว่าทำไมความขุ่นจึงมีความสำคัญในการวิเคราะห์คุณภาพน้ำ เนื่องจากสามารถทำหน้าที่เป็นตัวบ่งชี้ความเสี่ยงต่อสุขภาพที่อาจเกิดขึ้นได้ ความขุ่นในน้ำในระดับสูงอาจเป็นสัญญาณของการมีเชื้อโรคที่เป็นอันตราย เช่น แบคทีเรียและไวรัส ซึ่งอาจก่อให้เกิดความเสี่ยงต่อสุขภาพที่ร้ายแรงต่อมนุษย์หากกลืนเข้าไป ด้วยการตรวจสอบระดับความขุ่นในแหล่งน้ำ โรงบำบัดน้ำสามารถใช้มาตรการที่เหมาะสมเพื่อให้แน่ใจว่าน้ำมีความปลอดภัยสำหรับการบริโภค

alt-140

ชื่อผลิตภัณฑ์

PH/ORP-6900 ตัวควบคุมเครื่องส่งสัญญาณ pH/ORP พารามิเตอร์การวัด
ช่วงการวัด อัตราส่วนความละเอียด ความแม่นยำ พีเอช
0.00\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\~14.00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\±0.1 0.01 โออาร์พี
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\(-1999\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\~+1999\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\)mV 1mV \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\±5mV (มิเตอร์ไฟฟ้า) อุณหภูมิ
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\(0.0\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\~100.0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\)\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\℃ 0.1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\℃ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\±0.5\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\℃ ช่วงอุณหภูมิของสารละลายที่ทดสอบแล้ว
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\(0.0\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\~100.0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\)\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\℃ ส่วนประกอบอุณหภูมิ
องค์ประกอบความร้อน Pt1000 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\(4~20\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\)mA เอาต์พุตปัจจุบัน
หมายเลขช่อง 2 ช่อง ลักษณะทางเทคนิค
แยก ปรับได้เต็มที่ ย้อนกลับ กำหนดค่าได้ อุปกรณ์ / โหมดส่งสัญญาณคู่ ความต้านทานลูป
400\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\Ω\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\(Max\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\)\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\,DC 24V ความแม่นยำในการส่ง
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\±0.1mA ผู้ติดต่อควบคุม1
หมายเลขช่อง 2 ช่อง หน้าสัมผัสทางไฟฟ้า
สวิตช์ตาแมวเซมิคอนดักเตอร์ ตั้งโปรแกรมได้
แต่ละช่องสามารถตั้งโปรแกรมและชี้ไปที่ (อุณหภูมิ, pH/ORP, เวลา) ลักษณะทางเทคนิค
การตั้งค่าล่วงหน้าของการควบคุมสถานะเปิดตามปกติ / ปิดตามปกติ / พัลส์ /PID ความสามารถในการรับน้ำหนัก
50mA\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\(Max\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\)AC/DC 30V ควบคุมผู้ติดต่อ2
หมายเลขช่อง 1 ช่อง หน้าสัมผัสทางไฟฟ้า
รีเลย์ ตั้งโปรแกรมได้
แต่ละช่องสามารถตั้งโปรแกรมและชี้ไปที่ (อุณหภูมิ pH/ORP) ลักษณะทางเทคนิค
การตั้งค่าล่วงหน้าของการควบคุมสถานะเปิดตามปกติ / ปิดตามปกติ / พัลส์ /PID ความสามารถในการรับน้ำหนัก
3AAC277V / 3A DC30V การสื่อสารข้อมูล
RS485, โปรโตคอลมาตรฐาน MODBUS แหล่งจ่ายไฟทำงาน
AC220V\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\±10 เปอร์เซ็นต์ การใช้พลังงานโดยรวม
9W สภาพแวดล้อมการทำงาน
อุณหภูมิ: (0 ~ 50) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\℃ ความชื้นสัมพัทธ์: \\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\≤ ร้อยละ 85 (ไม่ควบแน่น) สภาพแวดล้อมในการจัดเก็บ
อุณหภูมิ: (-20 ~ 60) C ความชื้นสัมพัทธ์: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\≤ ร้อยละ 85 (ไม่ควบแน่น) ระดับการป้องกัน
ไอพี65 ขนาดรูปร่าง
220 มม.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\×165mm\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\×60mm (H\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\×W\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\×D) โหมดคงที่
แบบแขวนผนัง อีเอ็มซี
ระดับ 3 โดยสรุป ความขุ่นเป็นตัวแปรสำคัญในการวิเคราะห์คุณภาพน้ำที่สามารถให้ข้อมูลที่มีคุณค่าเกี่ยวกับสุขภาพของแหล่งน้ำ ด้วยการตรวจสอบระดับความขุ่น ผู้จัดการคุณภาพน้ำสามารถระบุความเสี่ยงต่อสุขภาพที่อาจเกิดขึ้น ปกป้องระบบนิเวศทางน้ำ และรับรองว่าน้ำมีความปลอดภัยสำหรับการบริโภคและการพักผ่อนหย่อนใจ สิ่งสำคัญคือต้องติดตามและจัดการระดับความขุ่นในแหล่งน้ำต่อไปเพื่อปกป้องสุขภาพของมนุษย์และสิ่งแวดล้อม

In addition to health risks, turbidity can also have negative impacts on aquatic ecosystems. Suspended particles in water can block sunlight from reaching aquatic plants, which can disrupt photosynthesis and ultimately Lead to a decline in plant growth. This can have a cascading effect on the entire ecosystem, impacting the health of Fish, invertebrates, and other aquatic organisms that rely on plants for food and habitat.

Furthermore, high Levels of turbidity can also affect the aesthetic quality of water. Cloudy or murky water is not only unappealing to look at, but it can also impact recreational activities such as swimming, Fishing, and boating. Turbidity can also affect the taste and odor of water, making it less desirable for drinking or other uses.

By monitoring turbidity levels in water sources, water quality managers can identify sources of contamination and take appropriate actions to improve water quality. This may involve implementing erosion control measures to prevent sediment runoff, reducing nutrient inputs that can fuel algal blooms, or implementing treatment processes to remove suspended particles from the water.

In conclusion, turbidity is an important parameter in water quality analysis that can provide valuable information about the health of water sources. By monitoring turbidity levels, water quality managers can identify potential health risks, protect aquatic ecosystems, and ensure that water is safe for consumption and recreational use. It is essential to continue monitoring and managing turbidity levels in water sources to protect human health and the Environment.