Comprendre l’effet Coriolis dans la mesure du débit

Modèle

appareil de mesure en ligne pH/ORP-5500 pH/ORP Plage
pH : 0,00 ~ 14,00 ; ORP : (-2000~+2000)mV ; Temp.:(0,0~99,9)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\°C (Compensation Temp. : NTC10K) Résolution
pH:0,01 ; ORP : 1 mV ; Temp.:0.1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\°C Précision
pH : +/-0,1 ; ORP : +/-5 mV (unité électronique) ; Temp. : +/-0,5\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\°C Temp. indemnisation
Plage : (0~120)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\°C; élément : Pt1000 Solution Tampon
valeur pH 9,18 ; 6,86 ; 4.01 ; 10h00 ; 7h00 ; 4.00 Temp.Moyenne
(0~50)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\°C (avec 25\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\°C en standard) temp. compensation pour la sélection Sortie analogique
Isolé (4 ~ 20) mA, instrument/transmetteur pour sélection Sortie de contrôle
Double sortie relais (ON/OFF); C.A. 240 V/3 A Environnement de travail
Temp.(0~50)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\℃; humidité relative Environnement de stockage <95%RH (non-condensing)
Temp.(-20~60)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\℃; Humidité relative \\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\≤85 pour cent HR (aucune condensation) Alimentation
24 V CC ; C.A. 110 V ; AC220V Consommation électrique
Niveau de protection <3W
IP65 (avec cache arrière) Dimension
96mmx96mmx105mm (HxLxP) Taille du trou
91mmx91mm (HxL) Comment les transmetteurs de débit Coriolis mesurent le débit massique

Les transmetteurs de débit Coriolis sont largement utilisés dans diverses industries pour mesurer avec précision le débit massique des liquides et des gaz. Comprendre le principe de fonctionnement de ces transmetteurs est essentiel pour garantir des mesures précises et fiables.

Au cœur d’un transmetteur de débit Coriolis se trouve un tube vibrant généralement en métal. Lorsque le fluide circule dans le tube, celui-ci vibre à une fréquence spécifique. L’effet Coriolis, résultant de la rotation de la Terre, provoque une légère torsion du tube dans le sens de l’écoulement. Ce mouvement de torsion est proportionnel au débit massique du fluide traversant le tube.

L’un des principaux avantages des transmetteurs de débit Coriolis est leur capacité à mesurer directement le débit massique, sans avoir besoin de calculs ou de corrections supplémentaires. Ceci contraste avec d’autres technologies de mesure de débit, telles que les débitmètres à pression différentielle, qui nécessitent des corrections de densité et de température pour convertir le débit volumétrique en débit massique.

Un autre avantage des transmetteurs de débit Coriolis est leur grande précision et leur répétabilité. La conception du tube vibrant garantit que la mesure n’est pas affectée par les modifications des propriétés du fluide, telles que la viscosité ou la densité. Cela rend les transmetteurs de débit Coriolis idéaux pour les applications où une mesure précise est essentielle, telles que le transfert commercial et le contrôle de processus.

En plus de mesurer le débit massique, les transmetteurs de débit Coriolis peuvent également fournir des informations supplémentaires sur le fluide, telles que la densité et la température. En mesurant la fréquence de vibration du tube, le transmetteur peut calculer la densité du fluide traversant le tube. Ces informations peuvent être utilisées pour surveiller la qualité du fluide ou pour contrôler le processus en fonction de la densité du fluide.

Les transmetteurs de débit Coriolis sont également capables de mesurer la température du fluide, soit directement, soit via un capteur de température externe. Ces informations peuvent être utilisées pour compenser les changements dans les propriétés du fluide dus aux variations de température, garantissant ainsi une mesure précise dans différentes conditions de fonctionnement.

Dans l’ensemble, le principe de fonctionnement des transmetteurs de débit Coriolis est basé sur l’effet Coriolis, qui provoque la torsion d’un tube vibrant. en réponse à l’écoulement du fluide. Ce mouvement de torsion est proportionnel au débit massique du fluide traversant le tube, permettant une mesure directe et précise du débit massique.

En conclusion, les transmetteurs de débit Coriolis constituent une technologie polyvalente et fiable pour mesurer le débit massique dans diverses applications industrielles. Leur grande précision, leur répétabilité et leur capacité à fournir des informations supplémentaires sur le fluide en font un choix populaire pour le contrôle et la surveillance des processus. Comprendre le principe de fonctionnement des transmetteurs de débit Coriolis est essentiel pour garantir des mesures précises et fiables dans n’importe quelle application.

Coriolis flow Transmitters are widely used in various industries to accurately measure the mass flow rate of liquids and gases. Understanding the working principle of these transmitters is essential for ensuring accurate and reliable measurements.

At the heart of a Coriolis flow transmitter is a vibrating tube that is typically made of metal. When fluid flows through the tube, it causes the tube to vibrate at a specific frequency. The Coriolis effect, which is a result of the Earth’s rotation, causes the tube to twist slightly in the direction of the flow. This twisting motion is proportional to the mass flow rate of the fluid passing through the tube.

One of the key advantages of Coriolis flow transmitters is their ability to measure mass flow rate directly, without the need for additional calculations or corrections. This is in contrast to other flow measurement technologies, such as differential pressure flow meters, which require density and temperature corrections to convert volumetric flow rate to mass flow rate.

Another advantage of Coriolis flow transmitters is their high accuracy and repeatability. The vibrating tube design ensures that the measurement is not affected by changes in fluid properties, such as viscosity or density. This makes Coriolis flow transmitters ideal for applications where precise measurement is critical, such as custody transfer and process control.

In addition to measuring mass flow rate, Coriolis flow transmitters can also provide additional information about the fluid, such as density and temperature. By measuring the frequency of the tube’s vibration, the transmitter can calculate the density of the fluid passing through the tube. This information can be used to monitor the quality of the fluid or to control the process based on the density of the fluid.

Coriolis flow transmitters are also capable of measuring the temperature of the fluid, either directly or through an external temperature sensor. This information can be used to compensate for changes in fluid properties due to temperature variations, ensuring accurate measurement under different operating conditions.

Overall, the working principle of Coriolis flow transmitters is based on the Coriolis effect, which causes a vibrating tube to twist in response to the flow of fluid. This twisting motion is proportional to the mass flow rate of the fluid passing through the tube, allowing for direct and accurate measurement of mass flow rate.

alt-8528

In conclusion, Coriolis flow transmitters are a versatile and reliable technology for measuring mass flow rate in various industrial applications. Their high accuracy, repeatability, and ability to provide additional information about the fluid make them a popular choice for process control and monitoring. Understanding the working principle of Coriolis flow transmitters is essential for ensuring accurate and reliable measurements in any application.